Abstract
There are numerous sources of mechanical energy in our environment, such as ultrasonic waves, body movement, and irregular air flow/vibration. Here, we present a simple, cost-effective approach for fabricating a flexible nanogenerator and apply it to harvest energy from environmental mechanical vibrations. The nanogenerator was based on ZnO nanorods grown on common paper substrate using a low-temperature hydrothermal method. Piezoelectric currents were measured by attaching the nanogenerator on the surface of a cantilever and a wind-up drum, respectively. At the same time, the vibrations of the cantilever and wind-up drum could also be characterized by the corresponding output signals. This is a practical and versatile technology with the potential for converting a variety of environment energy into electric energy, and also with the application for pre-warning of emergency, such as earthquake and burgling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.