Abstract

We describe a versatile reactor system for chemical vapor synthesis of nanoparticles, which enables in situ investigations of high temperature gas phase particle formation and transformation processes by x-ray scattering and x-ray absorption spectroscopy. The system employs an inductively heated hot wall reactor as the energy source to start nanoparticle formation from a mixture of precursor vapor and oxygen. By use of a modular set of susceptor segments, it is especially possible to change solely the residence time of the gas mixture while keeping all other process parameters (temperature, gas flow, pressure) constant. Corresponding time-temperature profiles are supported by computational fluid dynamics simulations. The operation of the system is demonstrated for two example studies: tin oxide nanoparticle formation studied by small angle x-ray scattering and iron oxide nanoparticle formation by x-ray absorption spectroscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.