Abstract

Accumulation of plastic and subsequent microplastic is a major environmental challenge. With the discovery of potent polyethylene terephthalate (PET)-degrading enzymes, a new perspective arose for environmental decomposition as well as technical recycling. To explore the enormous diversity of potential PET-degrading enzymes in nature and also to conveniently employ techniques like protein engineering and directed evolution, a fast and reliable assay platform is needed. In this study we present our versatile solution applying a PET coating on standard lab consumables such as polymerase chain reaction tubes, 96- and 384-well microtiter plates, yielding an adjustable crystallinity of the PET. Combining the reaction vessels with either ultra-high performance liquid chromatography (UHPLC) or fluorometric readout and additional enzyme quantification offers a range of advantages. Thereby, the platform can easily be adapted to diverse needs from detailed analysis with high precision to high-throughput (HT) applications including crude lysate analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.