Abstract

In this paper we present a vector model for the electroweak interactions. The Cartan map gives an isomorphism between Dirac bispinors and an isotropic class of Yang–Mills vector fields. The isotropic Yang–Mills vector fields Fk =Ek +iHk with k=1,2,3, satisfy the condition that the matrix of scalar invariants (Fj ⋅Fk) equals a scalar multiple of the identity matrix. We show that all the bispinor observables commute with the Cartan isomorphism, including all gauge transformations, as well as Lorentz transformations. We derive the Yang–Mills equivalent Dirac equation. As a consequence of the vector model, we obtain a new Lagrangian for electroweak interactions, which is an alternative to the Weinberg–Salam Lagrangian. Moreover, we show that the vector model predicts that the Weinberg angle θw satisfies sin2 θw =0.25, which is close to the measured value of sin2 θw =0.23. The vector model accommodates all the lepton and quark flavors. Furthermore, it predicts the conservation of baryon number and lepton number, as well as electric charge in electroweak interactions. The vector model also gives a new interpretation to antiparticles. In the vector model, an antiparticle is characterized by its opposite baryon number, lepton number, and electric charge; yet both particles and antiparticles propagate forward in time with positive energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.