Abstract

In this work we study vector electromagnetic wave propagation in a visible-light coronagraph for applications to the design and analysis of Terrestrial Planet Finder (TPF). A visible light coronagraph in TPF requires detection of a terrestrial planet which is ~1010 dimmer than the central stellar source. Consequently, any theory used to design and analyze TPF requires accuracy better than 10-10 in intensity or 10-5 in electric field. Current coronagraphic approaches to TPF have relied on scalar diffraction theory. However, the vector nature of light requires a vector approach to the problem. In this study we employ a time-harmonic vector theory to study the electromagnetic field propagation through metallic focal plane occulting mask on dielectric substrate. We use parallelized edge-based vector finite element model to compute the wave propagation in a three-dimensional tetrahedral grid representing the geometry of the coronagraph. The edge-based finite element method overcomes the problem of modal propagation and rigorously enforces the field divergence to be zero. The reflectivity and transmittivity in the geometry are computed through the gold metal in various shapes using a planar incident beam. Subsequently, the near-field beam diffraction around the mask is investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.