Abstract

A variational approach is employed to find stationary solutions to a free boundary problem modeling an idealized electrostatically actuated MEMS device made of an elastic plate coated with a thin dielectric film and suspended above a rigid ground plate. The model couples a non-local fourth-order equation for the elastic plate deflection to the harmonic electrostatic potential in the free domain between the elastic and the ground plate. The corresponding energy is non-coercive reflecting an inherent singularity related to a possible touchdown of the elastic plate. Stationary solutions are constructed using a constrained minimization problem. A by-product is the existence of at least two stationary solutions for some values of the applied voltage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.