Abstract
This paper presents the development of a simple parabolic residual stress depth profile model for characterising residual stresses in construction-sector glass. The proposed model requires only the knowledge of the surface residual stress, which is usually available from glass manufacturers. Unlike the complex computational techniques reported in the literature, such as modelling physical, microstructural and mechanical phenomena of glass at different temperatures during manufacturing, the proposed model obviates the need for modelling multi-physics phenomenon of the generation of residual stresses. The proposed model also eliminates the need of sophisticated experimental equipment, such as Scattered-Light-Polariscopes (SCALP), which are usually not available among practicing engineers, in order to characterise the residual stresses. Residual stress predictions from the proposed parabolic model were validated against experimental results reported in the literature. Using the concept of eigenstrains, the paper also extends the results of the proposed parabolic residual stress depth profile model for incorporating the effects of residual stresses in stress analysis of glass structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.