Abstract
Peristalsis, a motion generated by the propagation of muscular contraction along the body axis, is one of the most common locomotion patterns in limbless animals. While the kinematics of peristalsis has been examined intensively, its kinetics remains unclear, partially due to the lack of suitable physical models to simulate the locomotion patterns and inner drive in soft-bodied animals. Inspired by a soft-bodied animal, Drosophila larvae, we propose a vacuum-actuated soft robot mimicking its crawling behaviour. The soft structure, made of hyperelastic silicone rubber, was designed to imitate the larval segmental hydrostatic structure. Referring to a numerical simulation by the finite element method, the dynamical change in the vacuum pressure in each segment was controlled accordingly, and the soft robots could exhibit peristaltic locomotion. The soft robots successfully reproduced two previous experimental phenomena on fly larvae: 1. Crawling speed in backward crawling is slower than in forward crawling. 2. Elongation of either the segmental contraction duration or intersegmental phase delay makes peristaltic crawling slow. Furthermore, our experimental results provided a novel prediction for the role of the contraction force in controlling the speed of peristaltic locomotion. These observations indicate that soft robots could serve to examine the kinetics of crawling behaviour in soft-bodied animals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.