Abstract

For non-centrosymmetric (NCS) oxides intended for ultraviolet (UV) nonlinear optical (NLO) applications, achieving a wide band gap, large second harmonic generation (SHG) intensity, and sufficient birefringence to satisfy phase matching is a significant challenge due to their inherent incompatibility. To address this issue, this study proposes a strategy called framework-optimized structural transformation. Building upon centrosymmetric (CS) NaGa(SeO3)2 as a foundation, an original UV selenite NLO material, NaLu(SeO3)2, was successfully synthesized. The derived NaLu(SeO3)2 exhibits a balanced comprehensive performance, including a band gap (5.3 eV), an SHG response (2.7 × KDP), a UV cut-off edge (210 nm), a laser-induced damage threshold (LIDT) (151.69 MW cm-2), birefringence (Cal: 0.138@546 nm, Exp: 0.153@546 nm), thermal stability (∼575 °C) and environmental stability. Notably, its SHG effect, band gap, LIDT, and birefringence are all the largest among UV non-hydrogen pure selenite materials. Such progress can be attributed to the successful arrangement of the SeO3 groups by optimizing the cations on the framework of the parent compound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.