Abstract

Abstract For people with lower limb amputation, a user-specific human-machine interaction with their prostheses is required to ensure safe and comfortable assistance. Especially during dynamic turning manoeuvres, users experience high loads at the stump, which decreases comfort and may lead to long-term tissue damage. Preliminary experiments with users wearing a configurable, passive torsional adaptor indicate increased comfort and safety achieved by adaptation of torsional stiffness and foot alignment. Moreover, the results show that the individual preference regarding both parameters depend on gait situation and individual preference. Hence, measured loads in the structure of the prosthesis and subjective feedback regarding comfort and safety during different turning motions are considered in a user-specific human-machine interaction strategy for a prosthetic shank adaptor. Therefore, the interrelations of gait parameters with optimal configuration are stored in an individual preference-setting matrix. Stiffness and foot alignment are actively adjusted to the optimal parameters by a parallel elastic actuator. Two subjects reported that they experienced appropriate variation of stiffness and foot alignment, a noticeable reduction of load at the stump and that they could turn with less effort.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.