Abstract

Lane-changing and overtaking are conventional maneuvers on roads, and the reference trajectory is one of the prerequisites to execute these maneuvers. This study proposes a universal trajectory planning method for automated lane-changing and overtaking maneuvers, in which the trajectory is regarded as the combination of a path and its traffic state profiles. The two-dimensional path is represented by a suitable curve to connect the initial position with final position of the ego vehicle. Based on the planned path, its traffic state profiles are generated by solving a nonlinear mathematical optimization model. Moreover, the study discretizes the time horizon into several time intervals and determines the parameters to obtain the continuous and smooth profiles, which guarantees the safety and comfort of the ego vehicle. Finally, a series of simulation experiments are performed in the MATLAB platform and the results show the feasibility and effectiveness of the proposed universal trajectory planning method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.