Abstract
A physically based model for ion implantation of any species into single crystal silicon has been developed, tested and implemented in the ion implant simulator, UT-MARLOWE. In this model, an interpolation scheme, based on mathematical properties of ion-target interatomic potential, was employed and implemented to calculate the scattering process. Using this scheme, the resulting energy, direction and momentum of the ion and target can be derived from the existing scattering tables of UT-MARLOWE without calculating the entire scattering process. The method has advantages in terms of both accuracy and computational efficiency, as well as significantly reduced cost of code development. The impurity profiles and damage profiles predicted by the model simulations have been compared with secondary ion mass spectroscopy (SIMS) and Rutherford backscattering spectrometry (RBS), and excellent agreement with experimental data has been achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.