Abstract

In previous studies we demonstrated that the humoral immune response directed against unique central nervous system (CNS) antigens enhanced CNS remyelination in the Theiler's virus experimental model of multiple sclerosis (MS). To expand on this observation, a mouse IgM kappa monoclonal antibody (mAb) which enhances CNS remyelination, was raised against normal mouse spinal cord homogenate. Characterization of this mAb revealed that it is polyreactive towards variety of intracellular antigens but also reacts to an unidentified surface antigen on oligodendrocytes. The mAb is encoded by germline immunoglobulin genes without somatic mutations consistent with the observation that it is a natural autoantibody. Recently we generated another mouse IgM kappa mAb raised against normal spinal cord homogenate, which also promotes CNS remyelination. Further characterization revealed that both mAbs which promote remyelination have similar binding characteristics. Conventionally Abs which recognize normal CNS components, especially oligodendrocytes or myelin, have been considered to be a disease marker or be involved in the pathogenesis of MS. However, we have identified a unique population of circulating autoantibodies which are beneficial for myelin repair. Therefore this observation indicates the need to reevaluate autoantibody production against myelin components in CSF and blood as markers of disease activity versus repair in MS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.