Abstract

Over the last decade, Approximate Message Passing (AMP) algorithms have become extremely popular in various structured high-dimensional statistical problems. Many of the original ideas of AMP were developed in the physics and engineering literature and have recently been extended for use in computer science and machine learning. In this tutorial the authors give a comprehensive and rigorous introduction to what AMP can offer, as well as to unifying and formalizing the core concepts within the large body of recent work in the area. They lead the reader through the basic concepts of AMP before introducing the concept of low-rank matrix estimation. The authors conclude by covering generalized models. To complete the picture for researchers, proofs, technical remarks and mathematical background are also provided. This tutorial is an in depth introduction to Approximate Message Passing for students and researchers new to the topic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.