Abstract

AbstractWe study convergence to non-minimal quasi-stationary distributions for one-dimensional diffusions. We give a method for reducing the convergence to the tail behavior of the lifetime via a property we call the first hitting uniqueness. We apply the results to Kummer diffusions with negative drift and give a class of initial distributions converging to each non-minimal quasi-stationary distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.