Abstract

Extracellular field potentials (ECFs) generated in the cerebral cortex span a vast range of spatiotemporal scales. The process(es) leading to this large dynamic range remain debatable. Here we propose a novel statistical description of the amplitude spectrum of the human electrocorticogram (ECoG). Spectral analysis was performed on long-term recordings from epilepsy patients undergoing pre-surgical evaluation with intracranial electrodes. Amplitude spectra were fit with a multi-component Gaussian model on semi-logarithmic axes. The Gaussian formulation provided excellent fits to the data. It also suggested how the changes accompanying the sleep-wake cycle and certain epileptiform transitions could be understood by variation in the parameters of the model. The proposed continuum model synthesizes several previous observations regarding the statistical structure of the resting human ECoG. It offers a conceptual platform for understanding the EEG changes accompanying the sleep-wake cycle and pathologically hypersynchronous behaviour. Statistical characterisation of the spectral distribution of field potentials yield insight into the cortico-cortical interactions that underlie the summated cortical ECFs comprising the ECoG. Such insight is relevant for a synoptic understanding of major state changes in the brain that are diagnosed in clinical practice by visual inspection of the ECoG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.