Abstract

Traditional supervised classifiers use only labeled data (features/label pairs) as the training set, while the unlabeled data is used as the testing set. In practice, it is often the case that the labeled data is hard to obtain and the unlabeled data contains the instances that belong to the predefined class but not the labeled data categories. This problem has been widely studied in recent years and the semi-supervised PU learning is an efficient solution to learn from positive and unlabeled examples. Among all the semi-supervised PU learning methods, it is hard to choose just one approach to fit all unlabeled data distribution. In this paper, a new framework is designed to integrate different semi-supervised PU learning algorithms in order to take advantage of existing methods. In essence, we propose an automatic KL-divergence learning method by utilizing the knowledge of unlabeled data distribution. Meanwhile, the experimental results show that (1) data distribution information is very helpful for the semi-supervised PU learning method; (2) the proposed framework can achieve higher precision when compared with the state-of-the-art method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.