Abstract

We present a unifying framework which reduces the construction of probabilistic component analysis techniques to a mere selection of the latent neighbourhood, thus providing an elegant and principled framework for creating novel component analysis models as well as constructing probabilistic equivalents of deterministic component analysis methods. Under our framework, we unify many very popular and well-studied component analysis algorithms, such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Locality Preserving Projections (LPP) and Slow Feature Analysis (SFA), some of which have no probabilistic equivalents in literature thus far. We firstly define the Markov Random Fields (MRFs) which encapsulate the latent connectivity of the aforementioned component analysis techniques; subsequently, we show that the projection directions produced by all PCA, LDA, LPP and SFA are also produced by the Maximum Likelihood (ML) solution of a single joint probability density function, composed by selecting one of the defined MRF priors while utilising a simple observation model. Furthermore, we propose novel Expectation Maximization (EM) algorithms, exploiting the proposed joint PDF, while we generalize the proposed methodologies to arbitrary connectivities via parametrizable MRF products. Theoretical analysis and experiments on both simulated and real world data show the usefulness of the proposed framework, by deriving methods which well outperform state-of-the-art equivalents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.