Abstract

We study the problem of load balancing the traffic from a set of unicast and multicast sessions. The problem is formulated as an optimization problem. However, we assume that the gradient of the network cost function is not available and needs to be estimated. Multiple paths are provided between a source and a destination using application-layer overlay. We propose a novel algorithm that is based on what is known as simultaneous perturbation stochastic approximation and utilizes only noisy measurements collected and reported to the sources, using an overlay architecture. We consider three network models that reflect different sets of assumptions regarding multicast capabilities of the network. Using an analytical model we first prove the almost sure convergence of the algorithm to a corresponding optimal solution under each network model considered in this paper with decreasing step sizes. Then, we establish the weak convergence (or convergence in distribution) with a fixed step size. In addition, we investigate the benefits acquired from implementing additional multicast capabilities by studying the relative performance of our algorithm under the three network models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.