Abstract

Crystal growth is one of the most fundamental processes in nature. Understanding of crystal growth mechanisms has changed dramatically over the past two decades. One significant advance has been the recognition that growth does not only occur atom by atom, but often proceeds via attachment and fusion of either amorphous or crystalline particles. Results from recent experiments and calculations can be integrated to develop a simple, unified conceptual description of attachment-based crystal growth. This enables us to address three important questions: What are the driving forces for attachment-based growth? For crystalline particles, what enables the particles to achieve crystallographic coalignment? What determines the surface on which attachment occurs? We conclude that the extent of internal nanoparticle order controls the degree of periodicity and anisotropy in the surrounding electrostatic field. For crystalline particles, the orienting force stemming from the electrostatic field can promote oriented attachment events, although solvent-surface interactions modulate this control. In cases where perfect crystallographic alignment is not achieved, misorientation gives rise to structural defects that can fundamentally modify nanomaterial properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.