Abstract

This paper develops a unified conjugate mass transfer model for VOC (Volatile Organic Compound) emission, which implies conjugate boundary condition for mass transfer at the material-air interface. Thus, no special treatment is needed at the material-air interface and numerical methods for conjugate heat transfer problem can be applied directly. The material-air partition coefficient has been taken into account and its effect is the same as specific heat in the energy equation. The equivalent diffusion coefficient in the material KmaDm instead of Dm characterizes the rate of mass transfer. The ratioK ma D m /D a indicates whether VOC emission is controlled by the internal diffusion or not. The equivalent air-phase initial concentration C0/Kma determines the order of maximum concentration in the air. VOC emission contains two stages: the initial stage and the pseudo-steady stage when the emission rate nearly equals mass rate through the outlet of the air. Diffusion coefficient of VOC in the material has a significant effect on VOC emission in the two stages. The effect of partition coefficient on VOC emission depends on the value of KmaDm/Da.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.