Abstract
The paper derives many existing risk measures and premium principles by minimizing a Markov bound for the tail probability. Our approach involves two exogenous functions v(S) and φ(S, π) and another exogenous parameter α ≤ 1. Minimizing a general Markov bound leads to the following unifying equation: E [φ (S, π)] = αE [v (S)].For any random variable, the risk measure π is the solution to the unifying equation. By varying the functions φ and v, the paper derives the mean value principle, the zero-utility premium principle, the Swiss premium principle, Tail VaR, Yaari's dual theory of risk, mixture of Esscher principles and more. The paper also discusses combining two risks with super-additive properties and sub-additive properties. In addition, we recall some of the important characterization theorems of these risk measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.