Abstract

In the analysis of complex, nonlinear time series, scientists in a variety of disciplines have relied on a time delayed embedding of their data, i.e., attractor reconstruction. The process has focused primarily on intuitive, heuristic, and empirical arguments for selection of the key embedding parameters, delay and embedding dimension. This approach has left several longstanding, but common problems unresolved in which the standard approaches produce inferior results or give no guidance at all. We view the current reconstruction process as unnecessarily broken into separate problems. We propose an alternative approach that views the problem of choosing all embedding parameters as being one and the same problem addressable using a single statistical test formulated directly from the reconstruction theorems. This allows for varying time delays appropriate to the data and simultaneously helps decide on embedding dimension. A second new statistic, undersampling, acts as a check against overly long time delays and overly large embedding dimension. Our approach is more flexible than those currently used, but is more directly connected with the mathematical requirements of embedding. In addition, the statistics developed guide the user by allowing optimization and warning when embedding parameters are chosen beyond what the data can support. We demonstrate our approach on uni- and multivariate data, data possessing multiple time scales, and chaotic data. This unified approach resolves all the main issues in attractor reconstruction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.