Abstract

A unified 2-D continuous potential model for cylindrical nanowire junctionless accumulation mode (JAM) MOSFET and conventional inversion mode (IM) MOSFET has been presented in this manuscript. The 2-D Poisson’s equation in cylindrical coordinates is solved analytically with the help of the superposition principle and evanescent mode analysis of the Fourier-Bessel series is performed. Both free and depletion charges are considered in the 2-D Poisson’s equation. The model thus derived is continuous across different operation regimes (depletion and accumulation/inversion) with respect to VGS. Further, a threshold voltage model is also derived from the potential model and an expression of drain-induced barrier lowering (DIBL) is formulated. The short channel drain current model is derived from the potential-based charge model and quasi-ballistic transport velocity model. Furthermore, models for transconductance (gm) and output conductance (gd) is also formulated from the drain current model. A 3-D TCAD tool from CogendaTM has been used to numerically verify our proposed unified analytical model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.