Abstract

Explicit hybrid systems modelers like Simulink/Stateflow allow for programming both discrete- and continuous-time behaviors with complex interactions between them. A key issue in their compilation is the static detection of algebraic or causality loops. Such loops can cause simulations to deadlock and prevent the generation of statically scheduled code.This paper addresses this issue for a hybrid modeling language that combines synchronous data-flow equations with Ordinary Differential Equations (ODEs). We introduce the operator last(x) for the left-limit of a signal x. This operator is used to break causality loops and permits a uniform treatment of discrete and continuous state variables. The semantics relies on non-standard analysis, defining an execution as a sequence of infinitesimally small steps. A signal is deemed causally correct when it can be computed sequentially and only changes infinitesimally outside of announced discrete events like zero-crossings. The causality analysis takes the form of a type system that expresses dependences between signals. In well-typed programs, signals are provably continuous during integration provided that imported external functions are also continuous.The effectiveness of this system is illustrated with several examples written in Zelus, a Lustre-like synchronous language extended with hierarchical automata and ODEs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.