Abstract
To investigate nuclear lamina re-assembly in vivo, Drosophila A-type and B-type lamins were artificially expressed in Drosophila lamin Dm 0 null mutant brain cells. Both exogenous lamin C (A-type) and Dm 0 (B-type) formed sub-layers at the nuclear periphery, and efficiently reverted the abnormal clustering of the NPC. Lamin C initially appeared where NPCs were clustered, and subsequently extended along the nuclear periphery accompanied by the recovery of the regular distribution of NPCs. In contrast, lamin Dm 0 did not show association with the clustered NPCs during lamina formation and NPC spacing recovered only after completion of a closed lamin Dm 0 layer. Further, when lamin Dm 0 and C were both expressed, they did not co-polymerize, initiating layer formation in separate regions. Thus, A and B-type lamins reveal differing properties during lamina assembly, with A-type having the primary role in organizing NPC distribution. This previously unknown complexity in the assembly of the nuclear lamina could be the basis for intricate nuclear envelope functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.