Abstract

We propose a strategy for implementing genomic selection in plant breeding programs for developing inbred lines that reorganizes traditional breeding programs into two distinct components. These components are: (i) a population improvement component to develop improved germplasm through rapid recurrent selection and (ii) a product development component to identify new inbred varieties or parents for hybrids using traditional breeding program designs. Stochastic simulations of entire breeding programs over 40 yr were used to evaluate the effectiveness of this strategy relative to a conventional program without genomic selection and programs using three standard strategies of implementing genomic selection. Cost effectiveness was measured by constraining all programs to approximately equal annual operating costs and directly comparing each program's overall performance. Programs using the two‐part strategy generated between 2.36 and 2.47 times more genetic gain than the conventional program and between 1.31 and 1.46 times more genetic gain than the best performing standard genomic selection strategy. These results indicate that the two‐part strategy is a cost‐effective strategy for implementing genomic selection in plant breeding programs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.