Abstract
The amphibian skin has long been used as a model tissue for the study of ion transport and osmotic water movement across tight epithelia. To understand the mechanism of water uptake across amphibian skin, we model the skin as a well-stirred compartment bounded by an apical barrier and a tissue barrier. The compartment represents the lateral intercellular space between cells in the stratum granulosum. The apical barrier represents the stratum corneum, the principal/mitochondria-rich cells, and the junctional area between cells. This barrier is hypothesized to have the ability to actively transport solutes through Na+-K+-ATPase. The actively transported solute flux is assumed to satisfy the Michaelis-Menten relationship. The tissue barrier represents a composite barrier comprising the stratum spinosum, the stratum germinativum, the basal lamina, and the dermis. Our model shows that 1) the predicted rehydration rates from apical bathing solutions are in good agreement with the experiment results in Hillyard and Larsen (J Comp Physiol 171: 283-292, 2001); 2) under their experimental conditions, there is a substantial volume flux coupled to the active solute flux and this coupled volume flux is nearly constant when the osmolality of the apical bathing solution is >100 mosmol/kgH2O; 3) the molar ratio of the actively transported solute flux to the coupled water flux is about 1:160, which is the same as that reported in Nielsen (J Membr Biol 159: 61-69, 1997).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American journal of physiology. Regulatory, integrative and comparative physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.