Abstract
Materials and methods For screening, a single biological sample is used for each control and treatment group. If screening shows interesting findings, confirmation follows with more biological replicates and a definitive statistical analysis using pooled data from the screening and confirmation steps. This experimental design for qPCR reduces reagent cost and labor without sacrificing sensitivity. To quantitate gene expression, we selected the comparative Ct method due to its simplicity, intuitiveness, and popularity. For statistical analysis, however, this two-step approach raised an interesting question; which parameter should be used for statistical analysis of the data from the screening step. With a single biological sample, the statistical analysis relies on the technical replicates of qPCR. Even though it is natural to assume a normal distribution of the relative gene expression levels of biological replicates based on the central limit theorem, it is unknown for technical replicates because the Ct values of the technical replicates have been non-linearly transformed to obtain relative gene expression levels. Hence, we studied the distribution of delta-Ct and relative gene expression levels from our qPCR data and found that the distribution of delta-Ct is symmetrical and approximately normal while the distribution of relative gene expression levels is skewed. Therefore, we chose deltaCt as our parameter for statistical analysis of the technical replicates from the screening step. To automate the data analysis of the screening step, we developed REALPLOT. A text file is used to enter Ct values and gene/ group information into REALPLOT that calculates relative gene expression, performs statistical analysis, and graphically displays the screening step data. To automate the data analysis after the confirmation step, we developed REALPOOL that pools the data from both the screening and confirmation steps, performs the final statistical analysis, and generates a publishable graphical representation. REALPLOT and REALPOOL were developed using the open-source statistical R environment. They are compatible with all major computer operating systems.
Highlights
The quantitative polymerase chain reaction is a widely used sensitive method for measuring gene expression, especially for low levels of mRNA
If screening shows interesting findings, confirmation follows with more biological replicates and a definitive statistical analysis using pooled data from the screening and confirmation steps
We selected the comparative Ct method due to its simplicity, intuitiveness, and popularity. This two-step approach raised an interesting question; which parameter should be used for statistical analysis of the data from the screening step
Summary
The quantitative polymerase chain reaction (qPCR) is a widely used sensitive method for measuring gene expression, especially for low levels of mRNA. A two-step approach to qPCR experimental design and software for data analysis Huazhang Guo*, Larry Tague, Ramesh Ray, Gabor Tigyi Background The quantitative polymerase chain reaction (qPCR) is a widely used sensitive method for measuring gene expression, especially for low levels of mRNA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.