Abstract

This paper proposes a two-stage stochastic programming model for the parallel machine scheduling problem where the objective is to determine the machines' capacities that maximize the expected net profit of on-time jobs when the due dates are uncertain. The stochastic model decomposes the problem into two stages: The first (FS) determines the optimal capacities of the machines whereas the second (SS) computes an estimate of the expected profit of the on-time jobs for given machines' capacities. For a given sample of due dates, SS reduces to the deterministic parallel weighted number of on-time jobs problem which can be solved using the efficient branch and bound of M’Hallah and Bulfin [16]. FS is tackled using a sample average approximation (SAA) sampling approach which iteratively solves the problem for a number of random samples of due dates. SAA converges to the optimum in the expected sense as the sample size increases. In this implementation, SAA applies a ranking and selection procedure to obtain a good estimate of the expected profit with a reduced number of random samples. Extensive computational experiments show the efficacy of the stochastic model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.