Abstract
In the context of measurement error models, the true unobservable covariates are commonly assumed to have a normal distribution. This assumption is replaced here by a more flexible two-piece normal distribution, which allows for asymmetry. After setting-up a general formulation for two-piece distributions, we focus on the case of the normal two-piece construction. It turns out that the joint distribution of the actual observations (the multivariate observed covariates and the response) is a two-component mixture of multivariate skew-normal distributions. This connection facilitates the construction of an EM-type algorithm for performing maximum likelihood estimation. Some numerical experimentation with two real datasets indicates a substantial improvement of the present formulation with respect to the classical normal-theory construction, which greatly compensates the introduction of a single parameter for regulation of skewness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.