Abstract

In this paper, we develop a two-grid virtual element method for nonlinear variable-order time-fractional diffusion equation on polygonal meshes. The L1 graded mesh scheme is considered in the time direction, and the VEM is used to approximate spatial direction. The two-grid virtual element algorithm reduces the solution of the nonlinear time fractional problem on a fine grid to one linear equation on the same fine grid and an original nonlinear problem on a much coarser grid. As a result, our algorithm not only saves total computational cost, but also maintains the optimal accuracy. Optimal error estimates are analysed in detail for both the VEM scheme and the corresponding two-grid VEM scheme. Finally, numerical experiments presented confirm the theoretical findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.