Abstract

The Asian monsoon anticyclone, which develops in the upper troposphere and lower stratosphere during boreal summer, exhibits significant subseasonal variability with a characteristic spatial structure. The dynamics of this variability is investigated using a nonlinear β-plane shallow-water model. The equivalent depth is estimated using reanalysis data to relate the three-dimensional dynamics in isentropic coordinates to the shallow-water model. Composite analysis reveals the resemblance of the horizontal structures between the Montgomery streamfunction and thickness on the 360-K level. However, the coefficients of the linear regressions between those two variables are strongly dependent on latitude. The estimated equivalent depths of the northern region are more than 2 times greater than those of the southern region. This is attributable to the background thermal structure around the tropopause. Based on this, a latitude-dependent mean depth is incorporated into the shallow-water model to numerically investigate responses to a steady localized forcing in the subtropics. With the inclusion of the latitudinal dependence of the mean depth, the vortex shedding state is able to have a longitudinally confined structure, which differs from the conventional case of constant mean depth. The spatial structure of this numerical solution corresponds to the observed structure, in which low-PV air is largely confined to finite longitudes within the Asian monsoon anticyclone. This suggests the possible role of dynamical instability and the interaction with the subtropical jet in determining the characteristic structure of the Asian monsoon anticyclone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.