Abstract

Strain technology has become indispensable for present CMOS integrated circuits (ICs) as the feature size of transistor shrinks. In the meantime, stress-induced variation has also become an unavoidable problem. Unintentional stress, such as shallow trench isolation (STI)- induced stress, is one of the main variation sources and is strongly layout dependent. In this paper, a new 2-D layout-dependent STI stress model and related device parameter model are proposed. The stress model captures layout parameters along both the longitudinal direction and the transverse direction, based on which channel stress induced by STI is derived. Device parameters including threshold voltage, mobility, and saturation velocity are then modified according to several analytical models. The model can be integrated into standard CMOS IC design flow. By comparing with TCAD simulation and experiments with 65-nm process, it shows that the new model can give a better prediction accuracy than the original process design kit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.