Abstract

Animals on interval schedules of reinforcement can rapidly adjust a temporal dependent variable, such as wait time, to changes in the prevailing interreinforcement interval. We describe data on the effects of impulse, step, sine-cyclic, and variable-interval schedules and show that they can be explained by a tuned-trace timing model with a one-back threshold-setting rule. The model can also explain steady-state timing properties such as proportional and Weber law timing and the effects of reinforcement magnitude. The model assumes that food reinforcers and other time markers have a decaying effect (trace) with properties that can be derived from the rate-sensitive property of habituation (the multiple-time-scale model). In timing experiments, response threshold is determined by the trace value at the time of the most recent reinforcement. The model provides a partial account for the learning of multiple intervals, but does not account for scalloping and other postpause features of responding on interval schedules and has some problems with square-wave schedules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.