Abstract
Fuzzy rule-based systems (FRBSs) are well-known soft computing methods commonly used to tackle classification problems characterized by uncertainties and imprecisions. We propose a hybrid intelligent fruit fly optimization algorithm (FOA) to generate and classify fuzzy rules and select the best rules in a fuzzy if–then rule system. We combine a FOA and a heuristic algorithm in a hybrid intelligent algorithm. The FOA is used to create, evaluate and update triangular fuzzy rule-based and orthogonal fuzzy rule-based systems. The heuristic algorithm is used to calculate the certainty grade of the rules. The parameters in the proposed hybrid algorithm are tuned using the Taguchi method. An experiment with 27 benchmark datasets and a tenfold cross-validation strategy is designed and carried out to compare the proposed hybrid algorithm with nine different FRBSs. The results show that the hybrid algorithm proposed in this study is significantly more accurate than the nine competing FRBSs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.