Abstract

Participatory sensing (PS) has gained significant attention as a crowdsourcing methodology that allows ordinary citizens (non-expert contributors) to collect data using low-cost mobile devices. In particular, it has been useful in the collection of environmental data. However, current PS applications suffer from two problems. First, they do not coordinate the measurements taken by their users, which is required to maximise system efficiency. Second, they are vulnerable to malicious behaviour. In this context, we propose a novel algorithm that simultaneously addresses both of these problems. Specifically, we use heteroskedastic Gaussian Processes to incorporate users' trustworthiness into a Bayesian spatio-temporal regression model. The model is trained with measurements taken by participants, thus it is able to estimate the value of the phenomenon at any spatio-temporal location of interest and also learn the level of trustworthiness of each user. Given this model, the coordination system is able to make informed decisions concerning when, where and who should take measurements over a period of time. We empirically evaluate our algorithm on a real-world human mobility and air quality dataset, where malicious behaviour is synthetically produced, and show that our algorithm outperforms the current state of the art by up to 60.4% in terms of RMSE while having a reasonable runtime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.