Abstract

Using the buried oxide layer of silicon-on-insulator (SOI) wafers as the etch-stop layer, a triple-layer protection process integrating deep reaction ion etching (DRIE) and wet anisotropic bulk micromachining is demonstrated to fabricate various three-dimensional MEMS devices on SOI wafer. Several limitations of the DRIE process, including bottom grass formation, reactive ion etching lag and notching effects, are solved by modifying the process parameters to achieve satisfactory performance. This process is capable of various applications and is applied to fabricate a resonant pressure sensor in this study. In summary, the developed process possesses most existing merits and reduces many design constraints of the existing high-aspect-ratio micromachining process, contributing to a more competitive and convenient micromachining.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.