Abstract

Osmotic pressure and associated residual stresses play important roles in cartilage development and biomechanical function. The curling behavior of articular cartilage was believed to be the combination of results from the osmotic pressure derived from fixed negative charges on proteoglycans and the structural and compositional and material property inhomogeneities within the tissue. In the present study, the in vitro swelling and curling behaviors of thin strips of cartilage were analyzed with a new structural model using the triphasic mixture theory with a collagen-proteoglycan solid matrix composed of a three-layered laminate with each layer possessing a distinct set of orthotropic properties. A conewise linear elastic matrix was also incorporated to account for the well-known tension-compression nonlinearity of the tissue. This model can account, for the first time, for the swelling-induced curvatures found in published experimental results on excised cartilage samples. The results suggest that for a charged-hydrated soft tissue, such as articular cartilage, the balance of proteoglycan swelling and the collagen restraining within the solid matrix is the origin of the in situ residual stress, and that the layered collagen ultrastructure, e.g., relatively dense and with high stiffness at the articular surface, play the dominate role in determining curling behaviors of such tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.