Abstract

In this paper we consider trigonometric polynomials of semi-integer degree orthogonal with respect to a linear functional, defined by a nonnegative Borel measure. By using a suitable vector form we consider the corresponding Fourier sums and reproducing kernels for trigonometric polynomials of semi- integer degree. Also, we consider the Christoffel function, and prove that it satisfies extremal property analogous with the algebraic case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.