Abstract

We investigate machine-learning-based cross-layer energy-efficient transmission design for vehicular communication systems. A typical vehicle-to-vehicle (V2V) communication scenario is considered, in which the source intends to deliver two types of messages to the destination to support different safety-related applications. The first are periodically-generated heartbeat messages, and should be transmitted immediately with sufficient reliability. The second type are randomly-appeared sensing messages, and are expected to be transmitted with limited latency. Due to node mobility, accurate instantaneous channel knowledge at the transmitter side is hard to attain in practice. The transmit channel state information (CSIT) often exhibits certain delay. We propose a transmission strategy based on the deep reinforcement learning technique such that the unknown channel variation dynamics can be learned and transmission power and rate can be adaptive chosen according to the message delay status to achieve high energy efficiency. The advantages of our method over several conventional and heuristic approaches are demonstrated through computer simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.