Abstract

Languages that allow free word order, such as Arabic dialects, are of significant difficulty for neural machine translation (NMT) because of many scarce words and the inefficiency of NMT systems to translate these words. Unknown Word (UNK) tokens represent the out-of-vocabulary words for the reason that NMT systems run with vocabulary that has fixed size. Scarce words are encoded completely as sequences of subword pieces employing the Word-Piece Model. This research paper introduces the first Transformer-based neural machine translation model for Arabic vernaculars that employs subword units. The proposed solution is based on the Transformer model that has been presented lately. The use of subword units and shared vocabulary within the Arabic dialect (the source language) and modern standard Arabic (the target language) enhances the behavior of the multi-head attention sublayers for the encoder by obtaining the overall dependencies between words of input sentence for Arabic vernacular. Experiments are carried out from Levantine Arabic vernacular (LEV) to modern standard Arabic (MSA) and Maghrebi Arabic vernacular (MAG) to MSA, Gulf–MSA, Nile–MSA, Iraqi Arabic (IRQ) to MSA translation tasks. Extensive experiments confirm that the suggested model adequately addresses the unknown word issue and boosts the quality of translation from Arabic vernaculars to Modern standard Arabic (MSA).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.