Abstract

Nowadays, the rapid development of intelligent navigation systems has profound impacts on the routing of traffic users. With the assistance of these intelligent navigation systems, traffic users can obtain more accurate information about a traffic network such as traffic capacities, feasible paths, congestion status, etc. In this paper, we focus on a game-theory-based traffic congestion analysis model which considers incomplete traffic information (e.g., variabilities of path information) generated by intelligent navigation systems. The variabilities of path information are treated as incomplete information associated with different subsets of arcs. We adopt the notions of user equilibrium with incomplete information (UEII) and system optimum with incomplete information (SOII) in this study. Based on these two new notions, we extend two classical theorems and combine them into a new model to analyze the relationship between UEII and SOII. Finally, numerical cases are given to illustrate the implication of UEII and SOII in practical implementations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.