Abstract

In this paper, an optimal fault detection scheme is presented for a closed-loop control system, where an event-triggering mechanism is utilized for the transmission of output measurements, addressing the design of residual generation and evaluation, while considering the effects associated with unknown disturbances and faults in the system and event-triggered transmission errors on the generated residual. The triggering parameter-dependent residual generation is designed to achieve a best tradeoff between robustness against unknown disturbances and sensitivity to faults, and the residual evaluation is designed to deliver a time-varying threshold that accounts for the effects of disturbances and event-triggered transmission errors on the generated residual. The results are general and simplify to those developed for optimal fault detection in time-triggered systems. In addition, a vehicle lateral dynamic system is adopted to demonstrate the applicability of the proposed optimal fault detection scheme as well as its advantages over an existing widely used event-triggered fault detection scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.