Abstract

<div id="i4c-draggable-container" style="position: fixed; z-index: 1499; width: 0px; height: 0px;"><div class="resolved" style="all: initial;" data-reactroot=""> </div></div><p>In this paper, a tracking robust sliding mode learning control (SMLC) is proposed for a linear motor (LM) system. The proposed controller approach, SMLC, can guarantee a zero tracking error in the absence and presence of system uncertainties of the LM system. Unlike other classical sliding mode control (CSMC), the proposed control system is designed without any prior knowledge of the system perturbation which would facilitate control design and simplify its practical applications. To this end, a recursive learning technique is used which simultaneously adapted based on the previous information of the closed loop system stability. The system stability and convergence analysis are rigorously proved in the sense of the Lybenouve criteria. Finally, simulations results are presented to demonstrate the validity and effectiveness of the SMLC over the CSMC in terms of tracking performance and chattering alleviation.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.