Abstract

A toy model for gamma-ray burst supernovae (GRB SNe) is discussed by considering the coexistence of baryon-poor outflows from black holes (BHs) and a powerful spin connection to the surrounding disk, giving rise to consistent calorimetry as described by van Putten in a variant of the Blandford-Znajek (BZ) process. In this model the half-opening angle of the magnetic flux tube on the horizon is determined by the mapping relation between the angular coordinate on the BH horizon and the radial coordinate on the surrounding accretion disk. The GRB is powered by the baryon-poor outflows in the BZ process, and the associated SN is powered by a very small fraction of the spin energy transferred from the BH to the disk in the magnetic coupling process. The timescale of the GRB is fitted by the duration of the open magnetic flux on the horizon. It turns out that the data of several GRB SNe are well fitted with our model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.