Abstract

ABSTRACT Real-time 3D weather radar data processing makes it possible to efficiently simulate meteorological processes in digital Earth and support the assessment of meteorological disasters. The current real-time meteorological operation system can only deal with radar data within 2D space as a flat map and lacks supporting 3D characteristics. Thus, valuable 3D information imbedded in radar data cannot be completely presented to meteorological experts. Due to the large amount of data and high complexity of radar data 3D operation, regular methods are not competent for supporting real-time 3D radar data processing and representation. This study aims to perform radar data 3D operations with high efficiency and instant speed to provide real-time 3D support for the meteorological field. In this paper, a topological framework composed of basic inner topological objects is proposed along with the quadtree structure and LOD architecture, based on which 3D operations on radar data can be conducted in a split second and 3D information can be presented in real time. As the applications of the proposed topological framework, two widely used 3D algorithms in the meteorological field are also implemented in this paper. Finally, a case study verifies the applicability and validity of the proposed topological framework.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call