Abstract

Radial cell minicolumns are basic cytoarchitectonic motifs of the mammalian neocortex. Recent studies reveal that autism is associated with a "minicolumnopathy" defined by decreased columnar width and both a diminished and disrupted peripheral neuropil compartment. This study further characterizes this cortical deficit by comparing minicolumnar widths across layers. Brains from seven autistic patients and an equal number of age-matched controls were celloidin embedded, serially sectioned at 200 microm and Nissl stained with gallocyanin. Photomicrograph mosaics of the cortex were analyzed with computerized imaging methods to determine minicolumnar width at nine separate neocortical areas: Brodmann Area's (BA) 3b, 4, 9, 10, 11, 17, 24, 43 and 44. Each area was assessed at supragranular, granular and infragranular levels. Autistic subjects had smaller minicolumns whose dimensions varied according to neocortical area. The greatest difference between autistic and control groups was observed in area 44. The interaction of diagnosis x cortical area x lamina (F(16,316) = 1.33; P = 0.175) was not significant. Diminished minicolumnar width across deep and superficial neocortical layers most probably reflects involvement of shared constituents among the different layers. In this article we discuss the possible role of double bouquet and pyramidal cells in the translaminar minicolumnar width narrowing observed in autistic subjects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.