Abstract

There is growing interest in the clinical application of polygenic scores as their predictive utility increases for a range of health-related phenotypes. However, providing polygenic score predictions on the absolute scale is an important step for their safe interpretation. We have developed a method to convert polygenic scores to the absolute scale for binary and normally distributed phenotypes. This method uses summary statistics, requiring only the area-under-the-ROC curve (AUC) or variance explained (R2) by the polygenic score, and the prevalence of binary phenotypes, or mean and standard deviation of normally distributed phenotypes. Polygenic scores are converted using normal distribution theory. We also evaluate methods for estimating polygenic score AUC/R2 from genome-wide association study (GWAS) summary statistics alone. We validate the absolute risk conversion and AUC/R2 estimation using data for eight binary and three continuous phenotypes in the UK Biobank sample. When the AUC/R2 of the polygenic score is known, the observed and estimated absolute values were highly concordant. Estimates of AUC/R2 from the lassosum pseudovalidation method were most similar to the observed AUC/R2 values, though estimated values deviated substantially from the observed for autoimmune disorders. This study enables accurate interpretation of polygenic scores using only summary statistics, providing a useful tool for educational and clinical purposes. Furthermore, we have created interactive webtools implementing the conversion to the absolute (https://opain.github.io/GenoPred/PRS_to_Abs_tool.html). Several further barriers must be addressed before clinical implementation of polygenic scores, such as ensuring target individuals are well represented by the GWAS sample.

Highlights

  • A substantial proportion of individual differences in health and disease are explained by genetic variation [1]

  • A range of methods exist for processing Genome-wide association studies (GWAS) summary statistics prior to polygenic scoring to account for the linkage disequilibrium (LD) between variants and improve the predictive utility of polygenic scores [5]

  • This study has derived and evaluated methods for converting polygenic scores for both binary and normally distributed phenotypes from a relative value, of where the polygenic score lies on the distribution, into a value on the absolute scale

Read more

Summary

Introduction

A substantial proportion of individual differences in health and disease are explained by genetic variation [1]. One application of GWAS results is the estimation of genetic risk/propensity for a given phenotype using polygenic scores. Polygenic scores are calculated as the GWAS effect size-weighted sum of alleles carried by an individual [4]. A range of methods exist for processing GWAS summary statistics prior to polygenic scoring to account for the linkage disequilibrium (LD) between variants and improve the predictive utility of polygenic scores [5]. Polygenic scores capture only part of the genetic liability to a disease or trait, but the proportion explained increases with larger GWAS sample sizes and with improvements in polygenic scoring methodology. Individuals in the top 8% of cardiovascular disease (CAD) polygenic scores have a three-fold increased risk of developing CAD compared to the general population [6]. The implementation of polygenic scores within a clinical setting are being increasingly discussed and investigated [7, 8], but several barriers exist before these scores can become an established part of healthcare, including the low variance of risk explained and issues with interpretation

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.