Abstract
Persistent inflammation and disrupted immunoregulation are critical factors in impeding diabetic wound healing. While immunoregulatory hydrogel dressings hold significant promise for clinical applications in diabetic wound healing, the current application often demands intricate interventions and high-cost treatments involving cytokines and cell therapies. The development of single component immunoregulatory hydrogels remains a complex challenge. To address this issue, an active peptide hydrogel with immunoregulatory properties targeting the TLR4/NF-kB pathway, aiming to promote rapid diabetic wound healing, is engineered. The hydrogel sequence comprises naphthalene derivative, phenylalanine, and glycine to modulate hydrophilic/hydrophobic characteristics. The amino group on arginine contributes to tissue adhesion and regulation of intermolecular forces, ultimately yielding stable gels. The results underscore the formation of the peptide hydrogel (NFA) via the physical crosslinking of self-assembled nanofibers in water, thereby affording both excellent injectability and tissue adhesion. Notably, NFA demonstrates significant potential in promoting wound healing in a mouse model with full-thickness wounds by regulating macrophage responses in the inflammatory microenvironment through the TLR4/NF-kB pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.